
COP 3223: C Programming (Arrays – Part 3) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Arrays In C – Part 3

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Arrays – Part 3) Page 2 © Dr. Mark J. Llewellyn

More Examples Using Arrays In C
• In this section of notes, we’ll just look at several more

examples of using arrays in various applications.

• The first application will be to be write a program that reads the

values into a 2-d array from a file, and then computes all of the

row and columns sums of the table. The size of the matrix will

be the first two values in the file.

Example:

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

 
 
 
 
 
 
  

The sum of each row and

column in this matrix

equals 15.

COP 3223: C Programming (Arrays – Part 3) Page 3 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 4 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 5 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 6 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 7 © Dr. Mark J. Llewellyn

More Examples Using Arrays In C
• For our second application we’ll look at creating a magic

square. A magic square is a square matrix that contains each of

the numbers 1, 2, 3, ..., n2 exactly once and has the sum of the

numbers in each of its rows, columns and main diagonals equal

to the same value. The sum of each row, each columns and the

main diagonals is called the magic constant and is equal to

(n3+n)/2. So, for example, a 5 X 5 magic square should include

each of the numbers 1, 2, 3,…, 25 exactly once and the row,

column, and diagonal sums should be (53 + 5)/2 = 65.

• I want you to go thru this code and figure out the technique that

I used to generate the magic square. How did I know where to

place each value in the matrix?

COP 3223: C Programming (Arrays – Part 3) Page 8 © Dr. Mark J. Llewellyn

More Examples Using Arrays In C
• I used a technique known as the Siamese method which is:

– Starting from the central column of the first row with the number 1, the

fundamental movement for filling the squares is diagonally up and right,

one step at a time. If a filled square is encountered, one moves vertically

down one square instead, then continuing as before. When a move would

leave the square, it is wrapped around to the last row or first column,

respectively.

– For magic squares of odd size n constructed using the Siamese method,

several factors apply:

1. Smallest number = 1

2. Largest number = n2

3. Middle number = (n2 /2) + 0.5 (real number division here)

4. The middle number is always on the diagonal bottom left to top right

5. The largest number is always opposite 1 in an outside column or row.

COP 3223: C Programming (Arrays – Part 3) Page 9 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 10 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 11 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 12 © Dr. Mark J. Llewellyn

More Examples Using Arrays In C
• For our second example of using arrays and loops, we’ll

generate the first 30 Fibonacci numbers. Fibonacci numbers

are a sequence of integers where the each number is the sum of

the two preceding numbers. The first few Fibonacci numbers

are 0, 1, 1, 2, 3, 5, 8, 13, 21, and so on.

• We’ll write a program that uses a 1-d array named

fibonacci, initialize the first two values in the array and

then uses a loop to generate the remaining Fibonacci numbers.

• We’ll have our program write output to both the screen and to a

file named “fibonacci.dat”. What we’ll do with this

output file, is slightly modify the program you wrote for

Assignment #3 and determine which of the first 30 Fibonacci

numbers are prime.

COP 3223: C Programming (Arrays – Part 3) Page 13 © Dr. Mark J. Llewellyn

An aside on Fibonacci numbers:

On many plants, the number of petals is a Fibonacci number: buttercups have 5

petals (F(5)) lilies and iris have 3 petals (F(4)); some delphiniums have 8 (F(6));

corn marigolds have 13 petals (F(7)); some asters have 21 (F(8)) whereas

daisies can be found with 34 (F(9)), 55 (F(10)) or even 89 (F(11)) petals.

Look at your own hands: You have 2 hands each of which has 5 fingers, each of

which has 3 parts separated by 2 knuckles; all Fibonacci numbers!

Some weird/interesting facts about the Fibonacci sequence.

Every third number in the Fibonacci sequence is even.

Every kth number in the sequence is a multiple of F(k). For example F(4) = 3,

and F(8) = 31 which is 7X F(4), F(12) = 144 which is 48X F(4).

In the movie “The DaVinci Code” Fibonacci numbers were used as a

combination to unlock a safe.

If you take any 3 consecutive Fibonacci numbers, sum them and divide the sum

by two, you will always get the third number! Example: 13 + 21 + 34 = 68 and

68/2 = 34!

COP 3223: C Programming (Arrays – Part 3) Page 14 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 15 © Dr. Mark J. Llewellyn

I’ve put two versions of this program

on the web site for you. This version
uses an int type array and prints

only the first 30 Fibonacci numbers.
The second version uses a double

type array and prints the first 80

Fibonacci numbers.

COP 3223: C Programming (Arrays – Part 3) Page 16 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 18 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 19 © Dr. Mark J. Llewellyn

Case Study – Caesar Cipher
• In cryptography, a Caesar cipher, also known as a Caesar’s

cipher, a shift cipher, or Caesar code, is one of the simplest and

most widely known encryption techniques and falls in the

general category of cyclic substitution ciphers.

• Basically, a Caesar cipher is a substitution cipher where each

letter in plaintext (the uncoded message) is replaced by a letter

some fixed number of positions down the alphabet, typically

referred to as the shift factor, the letter in this shifted position

becomes the letter in the ciphertext (the coded message).

• This encryption technique was named after Julius Caesar, who

used it to communicate with his generals. This encryption

technique is often incorporated as part of more complex

encryption techniques such as the Vigenère cipher and the

ROT13 systems.

COP 3223: C Programming (Arrays – Part 3) Page 20 © Dr. Mark J. Llewellyn

Case Study – Caesar Cipher

Example of a Caesar cipher with shift of 4

Encoder

Original alphabet: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Shifted alphabet: W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

Plaintext message: I LOVE C PROGRAMMING

Encoded message: E HKRA Y LNKCNWIIEJC

Since: I = E with shift of 4, L = H with shift of 4, . . .

Decoder

Encoded message: E HKRA Y LNKCNWIIEJC

E = I with shift -4, H = L with shift -4, . . .

Decoded message: I LOVE C PROGRAMMING

COP 3223: C Programming (Arrays – Part 3) Page 21 © Dr. Mark J. Llewellyn

Case Study – Caesar Cipher
• What we’ll do in this case study is develop two programs, one

that encodes text messages using a Caesar cipher and a second

program that will decode a message that was encrypted using a

Caesar cipher.

• Both programs will be rather similar in nature, in that both will

use a 2-d array to hold an original alphabet and a number of

shifted versions of that alphabet. The encoder program will

read a message from the terminal and ask the user to enter the

shift amount for the encryption. The encryption program will

also read the original alphabet from a file named

“alphabet.dat”. It will encrypt the message and write the

shift amount and the encoded message to a file named
“encoded message.dat”.

COP 3223: C Programming (Arrays – Part 3) Page 22 © Dr. Mark J. Llewellyn

Case Study – Caesar Cipher
• The decoder program will read the file named “encoded

message.dat” and then using the shift amount that was stored

in this file; decode the message back into plaintext.

• Both of the programs are a bit larger than most of the programs

we’ve seen so far in the course. We will return to this case study

later in the semester when we covered functions and we’ll rewrite

these two programs and make both cosmetic and functional

improvements to the code.

• I have not shown all the code for either of these two program in

this set of notes. I’ve only printed out some of the code to

highlight the approach that was taken to solve the problem. You

will need to download the code from our code page in order to see

the whole thing! I encourage you to play with this program a bit.

COP 3223: C Programming (Arrays – Part 3) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 24 © Dr. Mark J. Llewellyn

Once the SHIFTS number of

shifted alphabets has been

generated, print them out to see if

they look ok. See next page. First

row is unshifted alphabet, 2nd row

is a shift of 1, 3rd row is a shift of 2

and so on.

COP 3223: C Programming (Arrays – Part 3) Page 25 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 26 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 27 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 28 © Dr. Mark J. Llewellyn

The output file “encoded

message.dat”

COP 3223: C Programming (Arrays – Part 3) Page 29 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 3) Page 30 © Dr. Mark J. Llewellyn

Output from the decoder program

COP 3223: C Programming (Arrays – Part 3) Page 31 © Dr. Mark J. Llewellyn

Practice Problems
1. Modify the example that begins on page 3 that computes the

row and column sums for any matrix so that in addition to row
and column sums, it will also produce the sum along the two
main diagonals if the array represents a square matrix. If the
matrix is not square nothing different happens.

COP 3223: C Programming (Arrays – Part 3) Page 32 © Dr. Mark J. Llewellyn

Practice Problems
2. Modify the magic square example from pages 8 & 9 so that writes to

an output file named “magic square.dat”, the row and column
dimensions of the matrix as well as the matrix itself. Then, using this
file as the input file to the program you just wrote to solve Practice
Problem 1, show that every row, column, and main diagonal sum is
the same.

Note that all you should need to do to your solution to Practice
Problem 1 is to change the file name that the program reads.

COP 3223: C Programming (Arrays – Part 3) Page 33 © Dr. Mark J. Llewellyn

Practice Problems
3. Modify the

matrix
addition
example
found in
Arrays In C
– part 2
lecture notes,
to multiply
two
compatible
matrices
together.

